MCQ Test Page
- If $*$ is a binary operation in a set $A$, then for all $a, b \in A$
- $a+b \in A$
- $a-b \in A$
- $a \times b \in A$
- $a * b \in A$
- If $z=(1,3)$ then $z^{-1}= $
- $(\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$
- $(-\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$
- $(\displaystyle{\frac{1}{10}},-\displaystyle{\frac{3}{10}})$
- $(-\displaystyle{\frac{1}{10}},-\displaystyle{\frac{3}{10}})$
- $\displaystyle{\frac{3}{2+2i}}=$
- $1-i$
- $1+i$
- $-2i$
- $\displaystyle{\frac{3-3i}{4}}$
- $\overline{z_1+z_2}=$
- $\overline{z_1}+\overline{z_2}$
- $\overline{z_1}-\overline{z_2}$
- $\overline{z_1}+z_2$
- $z_1+\overline{z_2}$
- $|z_1+z_2|$
- $>|z_1|+|z_2|$
- $\leq|z_1|+|z_2|$
- $\leq z_1+z_2$
- $>z_1+z_2$
- If $z_1=2+i$, $z_2=1+3i$, then $z_1-z_2=$
- $1-7i$
- $-1+7i$
- $1-2i$
- $3+4i$
- If $z_1=2+i$, $z_2=1+3i$, then $-i lm (z_1-z_2)=$
- $2i$
- $-2i$
- $2$
- $3$
- Which of the following sets has closure property with respect to multiplication?
- $\{-1,1\}$
- $\{-1\}$
- $\{-1,0\}$
- $\{0,2\}$
- The multiplicative inverse of $2$ is
- $0$
- $1$
- $-2$
- $\displaystyle{\frac{1}{2}}$