User Tools

MCQ Test Page

  1. If $*$ is a binary operation in a set $A$, then for all $a, b \in A$
    1. $a+b \in A$
    2. $a-b \in A$
    3. $a \times b \in A$
    4. $a * b \in A$
  2. If $z=(1,3)$ then $z^{-1}= $
    1. $(\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$
    2. $(-\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$
    3. $(\displaystyle{\frac{1}{10}},-\displaystyle{\frac{3}{10}})$
    4. $(-\displaystyle{\frac{1}{10}},-\displaystyle{\frac{3}{10}})$
  3. $\displaystyle{\frac{3}{2+2i}}=$
    1. $1-i$
    2. $1+i$
    3. $-2i$
    4. $\displaystyle{\frac{3-3i}{4}}$
  4. $\overline{z_1+z_2}=$
    1. $\overline{z_1}+\overline{z_2}$
    2. $\overline{z_1}-\overline{z_2}$
    3. $\overline{z_1}+z_2$
    4. $z_1+\overline{z_2}$
  5. $|z_1+z_2|$
    1. $>|z_1|+|z_2|$
    2. $\leq|z_1|+|z_2|$
    3. $\leq z_1+z_2$
    4. $>z_1+z_2$
  6. If $z_1=2+i$, $z_2=1+3i$, then $z_1-z_2=$
    1. $1-7i$
    2. $-1+7i$
    3. $1-2i$
    4. $3+4i$
  7. If $z_1=2+i$, $z_2=1+3i$, then $-i lm (z_1-z_2)=$
    1. $2i$
    2. $-2i$
    3. $2$
    4. $3$
  8. Which of the following sets has closure property with respect to multiplication?
    1. $\{-1,1\}$
    2. $\{-1\}$
    3. $\{-1,0\}$
    4. $\{0,2\}$
  9. The multiplicative inverse of $2$ is
    1. $0$
    2. $1$
    3. $-2$
    4. $\displaystyle{\frac{1}{2}}$

This website uses cookies. By using the website, you agree with storing cookies on your computer. Also, you acknowledge that you have read and understand our Privacy Policy. If you do not agree, please leave the website.

More information