

Federal Board HSSC – II Examination Chemistry – Mark Scheme

SECTION A

0	.1	
<u> </u>		

i.		ii.		iii.	
iv.		v.		vi.	
vii.	C	viii.	А	ix.	
Х.		xi.	В	xii.	D
xiii.	А	xiv.	В	XV.	С
xvi.	С	xvii.	В		

(17 × 1=17)

SECTION B

Q.2				(3)
	a.	Absc	orption of CO_2 and release of O_2	(1+1=2 marks)
	b.	2KO	$2 + 2CO_2 \longrightarrow 2K_2CO_3 + 3O_2$	(1 mark)
Q.3				(3)
	a.	Whit	e phosphorus	(1 mark)
	b.	\mathbf{P}_4		(1 mark)
	c.	Struc	cture	(1 mark)
Q.4				(3)
	a.	Iron	acts as cathode	(1 mark)
	b.	i.	Oxidation reaction	(½ mark)
		ii.	Reduction reaction	(½ mark)
		iii.	Redox reaction	(1 mark)
Q.5				(3)
C	Reac	tion co	onditions	$(\frac{1}{2}+\frac{1}{2}=1 \text{ mark})$
	Equa			(1+1=2 marks)

Q.6 (3) Electron with-drawing property of –COOH, –CN (1 mark) Formation of meta product & O'P products with equations. (2 marks)

(**OR**)

Explain Resonance due to delocalization Resonance energy

Q.7	a.	Pyridine	(3) (1 mark)
	a. b.	Proper reasoning is required. Absence of steric hin	· · · ·
	0.	in primary halide results in simultaneous departure	
		of nu ⁻	(2 marks)
Q.8			(3)
	i.	Reaction with NaHSO ₃	(1 mark)
	ii.	Uses (purification)	
		a. for aldehyde	(1 mark)
		b. for ketones	(1 mark)
Q.9			(3)
		nition of oxidizing smog	(1 mark)
	Any	two properties	(1+1=2 marks)
0 10			
Q.10	_		(3)
	a.	Formation of transparent glass on heating which di	
	b.	forming coloured bead. Alkaline	(2 marks)
	D.	Aikainie	(1 mark)
Q.11			(3)
Q.11	a.	Formation of fog and difficult to condense.	$(1\frac{1}{2} \text{ marks})$
	b.	Any one equation	$(1\frac{1}{2} \text{ marks})$
	01		(1) 2
Q.12			(3)
C	a.	Resonance structures of phenolate ion and absence	
		in ethanoate ion	(2 marks)
	b.	Ethanoic acid	(1 mark)
		(OR)	
	a.	Weak Vander Waals forces in hydrocarbons.	$(1\frac{1}{2} \text{ marks})$
	a. b.	Tendency to form H-bonding with water reduces w	· · · ·
	0.	increase in non-polar character in larger carboxylic	
		increase in non polar character in larger carboxyne	2 uolus. (172 murks)
Q.13			(3)
	a.	Definition and structure of Zwitter ion	(1 mark)
	b.	Two reasons	(1+1=2 marks)

Q.14		(3)
a.	Reaction	(1 mark)
b.	Definition of saponification	(1 mark)
	Chemical reaction	(1 mark)
Q.15		(3)
а.	Specific temperature	(1 mark)
b.	Oxide formation of impurities	(1 mark)
	formation of silicates	(1 mark)

SECTION C

Q.16			(13)
-	a.	Down's cell (for fused NaCl)	(½ mark)
		Diaphragm cell or Nelson's cell for brine	(½ mark)
	b.	Down's cell	
		i. Reaction at cathode	(1 mark)
		ii. Reaction at anode	(1 mark)
		Diaphragm or Nelson's cell	
		i. Reaction at cathode	(1 mark)
		ii. Reaction at anode	(1 mark)
	c.	Reason of discharge of H ⁺ ions instead of Na ⁺ ions at	
		cathode in diaphragm cell.	(2 marks)
	d.	Labelled diagrams of both cells (3+3	=6 marks)
		(OR)	
	a.	Name and disadvantages of worst method (1+1)	=2 marks)
	b.	Name of suitable method	(1 mark)
		Advantages (1×4	=4 marks)
	c.	Definition of incineration	(1 mark)
		Explanation of incineration of industrial waste	(2 marks)
	d.	Purpose of chlorination of water	(1 mark)
		Hazardous effect of chlorinated water for human beings	(2 marks)
Q.17			(13)
C ¹	a.	i. – Ionization of sodium or potassium salt of suitable	
		carboxylic acid	(1 mark)
		– Reaction at cathode	(1 mark)
		– Reaction at anode	(1 mark)
		ii. Same division of marks as above	(3 marks)
	b.	i. – Test with ammoniacal silver nitrate (equation)	(1 mark)
		– Observation	(1 mark)

	ii. – Test with ammoniacal cuprous chlor – Observation	ide (equation) (1 mark) (1 mark)			
c.	Conversion				
	i. Reaction with ozone	(2 marks)			
	ii. Conversion to ethanal	(1 mark)			
(OR)					
a.	Name and example of three types of polymo	ers. $(1 \times 3 = 3 \text{ marks})$			
b.	Biopolymers (Definition)	(1 mark)			
	Name of four types of biopolymers	$(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2 \text{ marks})$			
c.	Reaction to form peptide linkage	(1 mark)			
	Explanation of reaction	(2 marks)			
	Differentiation of polypeptide and protein	(1 mark)			
d.	Four points of importance	$(\frac{1}{2} \times 4 = 2 \text{ marks})$			
e.	De-naturing of protein.	(1 mark)			