If $*$ is a binary operation in a set $A$, then for all $a, b \in A$
$a+b \in A$
$a-b \in A$
$a \times b \in A$
$a * b \in A$
If $z=(1,3)$ then $z^{-1}= $
$(\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$
$(-\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$
$(\displaystyle{\frac{1}{10}},-\displaystyle{\frac{3}{10}})$
$(-\displaystyle{\frac{1}{10}},-\displaystyle{\frac{3}{10}})$
$\displaystyle{\frac{3}{2+2i}}=$
$1-i$
$1+i$
$-2i$
$\displaystyle{\frac{3-3i}{4}}$
$\overline{z_1+z_2}=$
$\overline{z_1}+\overline{z_2}$
$\overline{z_1}-\overline{z_2}$
$\overline{z_1}+z_2$
$z_1+\overline{z_2}$
$|z_1+z_2|$
$>|z_1|+|z_2|$
$\leq|z_1|+|z_2|$
$\leq z_1+z_2$
$>z_1+z_2$
If $z_1=2+i$, $z_2=1+3i$, then $z_1-z_2=$
$1-7i$
$-1+7i$
$1-2i$
$3+4i$
If $z_1=2+i$, $z_2=1+3i$, then $-i lm (z_1-z_2)=$
$2i$
$-2i$
$2$
$3$
Which of the following sets has closure property with respect to multiplication?
$\{-1,1\}$
$\{-1\}$
$\{-1,0\}$
$\{0,2\}$
The multiplicative inverse of $2$ is
$0$
$1$
$-2$
$\displaystyle{\frac{1}{2}}$